# ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI <br> DEPARTMENT OF MATHEMATICS <br> Learning Resources <br> Title of the paper: LINEAR ALGEBRA <br> Prepared By <br> Dr.K.Meena, Associate Professor and Head <br> <br> ONE MARK QUESTIONS AND ANSWERS <br> <br> ONE MARK QUESTIONS AND ANSWERS <br> <br> UNIT-I 

 <br> <br> UNIT-I}

1. For each $F$ and $v \epsilon V$ we have an element $\alpha v \epsilon V$ This operation is called ---- Ans: (scalar multiplication)
2. Any field $K$ is a vector space over any of its ----- Ans: (sub field)
3. Let $V$ is a vector space over $F$.A non-empty subset $W$ of $V$ is a subspace of $V$ iff $w_{1}, w_{\mathbf{2}} \in W \& \alpha, \beta \in F==>-------A^{A n s: ~}(\alpha u+\beta v \epsilon W)$
4. The intersection of two subspace of a vector space is a $\qquad$ Ans: (subspace)
5. The union of two subspace of a vector space Ans: (need not be a subspace)
6. The union of two subspace of a vector space is a subspace iff $\qquad$ Ans: (one is contained in the other)
7. Let $U$ and $V$ are vector space over $F$ then the mapping $T$ of $U$ onto $V$ is said to be homomorphism if $-----a) T(u+v)=T(u)+T(v)$. b) $T(\alpha u)=\alpha$ $T(u) . c) T(\alpha u+\beta v)=\alpha T(u)+\beta T(v) . d) T(\alpha+\beta)=T \alpha)+T(\beta)$
Where $u, v \in V$ and $\alpha, \beta \in F$. Ans: (c) $T(\alpha u+\beta v)=\alpha T(u)+\beta T(v))$
8. A homomorphism $T$ of vector spaces is also called ----Ans: (a linear transformation)
9. A homomorphism $\mathbf{T}$ of vector spaces if $\mathbf{T}$ is $\mathbf{1 - 1}$. Then T is called --Ans: (monomorphism)
10.A homomorphism $T$ of vector spaces if $T$ is $\mathbf{1 - 1}$ and onto, Then $T$ is called ---------- Ans: (isomorphism)
10. A homomorphism $T$ of vector spaces if $T$ is onto, $T$ hen $T$ is called ---Ans: (epimorphism)

## 12. A linear transformation $\mathbf{T}: \mathbf{V}$--->F is called----- Ans: (linear

 functional)13. Let $V$ and $W$ vector spaces over a field $F$ and $T: V$---> $W$ be a linear transformation, Then kernel of $T=------$ Ans: ( $\{v / v \in V \& T(v)=0\})$
14. Let $\mathrm{T}: \mathrm{V}--->\mathrm{W}$ be a linear transformation $\mathrm{Th}^{2} \mathrm{~T}$ is a monomorphism iff $\qquad$ Ans: (ker $T=\{0\}$ )
15. Let $A$ and $B$ be subspaces of a vector spaces $V$. Then $V$ is called the direct sum of $A$ and $B$ if $-----A n s:(A+B=V \& A \cap B=\{0\})$
16. If $A$ and $B$ be subspaces vector spaces of $V$. Then $A+B / B$ is isomorphic to
--------------- Ans: ( $\mathbf{A} / \mathbf{A} \cap \mathrm{B})$
17. In the linear transformation $T: V_{\mathbf{3}}(R) \cdots \quad V_{\mathbf{3}}(R)$ defined by $T(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}, \mathbf{y}, \mathbf{0})$. Then ker $\mathbf{T}=------$ Ans: $(\{(\mathbf{0}, \mathbf{0}, \mathrm{z}) / \mathbf{z} \in \mathbf{R}\})$ Say True or False
18. Any vector space is an abelian group with respect to vector addition. Ans:True.
19. $C$ is vector space over the field $R$. Ans:True.
20. $R$ is not a vector space over C. Ans:True.

## UNIT-II

21. Any vector space contains an infinite number of elements. Ans: False
22. $R[x]$ is a vector space over $C$. Ans: False.
23. The set of all polynomials of even degree in $R[x]$ is a vector space over R-
Ans: False
24. In $V_{2}(R)$ Let $S=\{(1,0),(0,1)\}$ Then $\left.L(S)=------a\right) S$ b) $\{(x, 0) / \mathbf{x} \in R\}$ c) $\{(\mathbf{0}, \mathbf{y}) / \mathbf{y} \in R\} \quad$ d) $V_{2}(R)$ Ans: d) $V_{2}(R)$
25. In $V_{2}(R)$ Let $S=\{(4,0)\}$ Then $\left.L(S)=-\cdots---a\right) S$ b) $\{(\mathbf{x}, \mathbf{0}) / \mathbf{x \epsilon} \mathbf{R}\}$ c) $\{(0, y) / \mathbf{y} \epsilon$ R\}
d) $V_{2}(R)$ Ans:
b) $\{(\mathbf{x}, \mathbf{0}) / \mathbf{x} \in \mathbf{R}\}$
26. In $V_{3}(R)$ Let $S=\left\{e_{1}, e_{2}, e_{3}\right\}$ Then $L(S)=$
a) $S$ b) $\{(\mathbf{x}, \mathbf{y}, \mathbf{0}) / \mathbf{x}, \mathbf{y} \in R\}$
c) $\{(0, y, z) / \mathbf{y}, \mathrm{z} \in \mathrm{R}\} \mathbf{d}) \mathrm{V}_{\mathbf{3}}(\mathrm{R})$ Ans: $\mathrm{V}_{\mathbf{3}}(\mathbf{R})$
27. In $R[x]$ Let $S=\left\{1, x, x^{2}, x^{3}\right\} \quad$ Then $L(S)=------$
a) $R[x]$ b) $V_{3}(R)$
c) S
d) set of all polynomials of degree $\leq 3$

Ans: d) set of all polynomials of degree $\leq 3$
28. In $R$ Let $S=\{1\}$ Then $L(S)$ a) $S$ b) $C$ c) $R$ d) $Q$ Ans: c) $R$
29. $\operatorname{dim} M_{2}(R)=$
a) 1
b) 2 c) 3
d)4 Ans:
d)4
30. In $V_{3}(R)$ Let $S=L[\{(1,1,1)\}]$ and $T=[\{(-1,-1,-1)\}]$ Then $\operatorname{dim}(S \cap T)$ is ---
a) 1
b) 0
c) 2
d) none Ans:
a) 1
31. Any two bases of a finite dimensional vector space $V$ have

Ans: (the same number of elements)
32. Let $V$ be a vector space of dimension $n$. Then any set of $m$ vectors where
$\mathbf{m}>\mathrm{n}$ is ------------ Ans: (linearly dependent)
33. Let $V$ be a vector space of dimension $n$. Then any set of $m$ vectors where

```
m<n is ------------- Ans: (cannot span V)
```

Say True or False
34. Given any field $\mathbf{F}$ there exists a vector space of dimension $\mathbf{n}$ over $\mathbf{F}$. Ans: True.
35. Any two vector space over a field $F$ are isomorphic iff they have the same dimension- Ans: True.
36. Any two bases of a finite have the same number of elements . Ans:True
37. Any vector space of dimension $n>1$ has non trivial subspace. Ans:True
38. If Vis vector space of dimension $n$ and $m<n$ then there exists a subspace of $V$ of dimension $m$. Ans:True
39. Any linear transformation from a finite dimensional vector space $V$ to finite dimensional vector space $W$ can be represented by metric. Ans:True
40. If $V$ is a finite dimensional vector space and if $u_{1}, u_{2}, \ldots u_{m}$ span $V$ then some subset of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \mathbf{u}_{\mathrm{m}}$ form a ------- Ans: (basic of $V$ ) UNIT-III
41.If $u_{1}, u_{2}, \ldots u_{m}$ is a basic of $V$ over $F$ and if $w_{1}, w_{2}, \ldots w_{m}$ in $V$ are linearly independent over $F$ then ------ Ans: $(m \leq n)$
42. If $A$ and $B$ are finite dimensional subspaces of a vector space $V$ then
$A+B$ is Finite dimensional and $\operatorname{dim}(A+B)=-----A n s:(\operatorname{dim}(A)+\operatorname{dim}(B)-$ $\operatorname{dim}(A \cap B))$
43. If $V=A+B$ Then $\operatorname{dim} V=-----$ Ans: $(\operatorname{dim} A+\operatorname{dimB})$
44. $\operatorname{Hom}(V, W)$ to be the set of all vector space--------of $V$ into $W$ (Ans: homomorphism)
45. If $V$ and $W$ are of dimension $m$ and $n$,respectively over $F$ then $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$ is of dimension --------over F. (Ans: mn)
46. If $\operatorname{dim} \mathrm{V}=\mathrm{m}$ then $\operatorname{dim} \operatorname{Hom}(\mathrm{V}, \mathrm{V})=----$ ( Ans: $\mathrm{m}^{2}$ )
47. If $\operatorname{dim}_{F} V=m$ then $\operatorname{dim}_{F} \operatorname{Hom}(V, F)=-\cdots--($ Ans: $m)$
48.If $V$ is vector space then its dual space is --------( Ans: $\operatorname{Hom}(V, F))$
49. An element of the dual space of $V$ will be called a
(Ans: linear functional on V into F )
50. Let $V$ be a finite dimensional vector space over $F$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of $V$ Let $v_{1}, v_{2}, \ldots, v_{n}$ be the functional defined by $V_{i}\left(V_{j}\right)=\{1$ if $i=j$ $\& 0$ if $i \neq j$ Then $\quad\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V$ Ans: (This known as Basis of dual space)
51. If $V$ is finite dimensional and $v \neq 0 \epsilon V$ then there is an element $f \in V$ such that --------------( Ans: f(v) $\neq 0$ )
52. If $\mathbf{V}$ is finite dimensional , Then $\Psi$ is an isomorphism of $V$ onto $V$ Ans: (True)
53. Let $V$ be a finite dimensional vector space over a field $F$.

Then $\Psi: V--->V$ defined by $\Psi(v)=T_{v}$ is an ----------- where $T_{v}(f)=f(v)$ for all $f \in V \quad$ Ans: (Isomorphism)
54. If $W$ is a subspace of $V$ Then the annihilator of $W, A(W)=$ $\qquad$ Ans: $\quad\{f \in V / f(w)=0$ for all $w \in W\}$
55. A(A(W)) =------------Ans: W
56. If $V$ is finite dimensional and $W$ is a subspace of $V$, Then $W$ is isomorphic to $V / A(W)$ and $\operatorname{dim} A(W)=--------A n s: \operatorname{dim} V-\operatorname{dimW}$
57. $A(W)$ is a subspace of $V$ Ans:True
58. $A$ vector space $V$ is called a real vector space or

Ans: (complex vector space)
59. Two vectors $v=\left(x_{1}, x_{2}, x_{3}\right)$ and $w=\left(y_{1}, y_{2}, y_{3}\right)$ v.w=--------

Ans: $\left(x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right)$
60.Two vectors V\& W are given Find the length of v is -------- Ans: $\sqrt{v} . v$ UNIT-IV
61.Two vectors $V \& W$ are given Find the angle $\boldsymbol{\theta}$ between $\mathrm{v} \& \mathbf{w}$ is

Ans: $\cos \theta=\mathrm{v} . \mathrm{w} / \sqrt{\boldsymbol{v}} . \boldsymbol{v} \sqrt{\boldsymbol{w}} . \boldsymbol{w}$
62. $<\mathbf{u}, \boldsymbol{\alpha v}+\boldsymbol{\beta} \mathbf{w}>=-------$ Ans: $\boldsymbol{\alpha}<\mathbf{u}, \mathbf{v}>+\boldsymbol{\beta}<\mathbf{u}, \mathbf{w}>$
63. If $v \epsilon \mathrm{~V}$ then the norm of v is ------ Ans: $\|\mathrm{v}\|=\sqrt{\langle v, v\rangle}$
64. In norm of vector space $V$, $v \in V$ is called unit vector if ------ Ans: $\| v$ || = 1
65. Write Schwarz inequality. Ans: Let V be an inner product space and Let $\mathbf{u}, \mathbf{v} \in V$ Then $|<\mathbf{u}, \mathbf{v}\rangle \mid \leq\|\mathbf{u}\|\|\mathbf{v}\|$.
66. Write Triangle inequality.

Ans: For any two vectors $\mathbf{u}, \mathbf{v}$ in $\mathbf{V}\|u+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$
67. Let $V$ be an inner product space and let $u, v \in V$, Then $u$ is said to be orthogonal to $v$ if

Ans: $\langle\mathbf{u}, \mathrm{v}\rangle=\mathbf{0}$
68. Let $V$ be an inner product space. A set $S=\left\{v_{i}\right\}$ of vectors in $V$ is said to be an orthonormal set if
Ans: i) $\left\langle v_{i}, v_{i}\right\rangle=1$ for each $i \quad$ ii) $\left\langle v_{i}, v_{j}\right\rangle=0$ for each $i \neq j$
69. Every finite dimensional inner product space has an

Ans: orthonormal basis
70. Let V be an inner product space $\& \mathrm{~W}$ a subspace of V . Then the orthogonal complement of $W$ is $W^{\perp}=-\ldots-$ Ans: $W^{\perp}=\{v \in V /\langle v, w\rangle$ $=0$ for all $\mathbf{w} \mathbf{\epsilon} \mathbf{W}$ \}
71.In an inner product space $V\|u+v\|^{2}+\|u-v\|^{2}=----------$ Ans: $2\left(\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}\right)$
72. Find the norm of $(1,3,-5)$ in $R^{3}$ with standard inner product. Ans : $\sqrt{ } 35$
73. Find the norm of $(2,0,-1)$ in $\mathbf{R}^{3}$ with standard inner product. Ans : $\sqrt{ } 5$
74. Find the norm of $(1,2,3)$ in V3(R) with standard inner product. Ans : $\sqrt{ } 14$
75. || $\alpha v|\mid=------------$ Ans: $| \alpha|||v||$
76. $<\alpha u+\beta v, \alpha u+\beta v>=--------------A n s: \alpha \alpha<u, u>+\alpha \beta<u, v>+\alpha \beta<v, u>$ $+\beta \beta<v, v>$
77. If $a, b, c$ are real numbers such that $a>0$ and $a \lambda^{2}+2 b \lambda+c \geq 0$ for all real numbers $\lambda$ then $\qquad$
78. Let $V$ be a finite dimensional inner product space and $W$ a subspace of $V$. Then ( $\left.\mathrm{W}^{\perp}\right)^{\perp}=$ $\qquad$ Ans: W
Say True or False
79. Say True or False $\|x+y\|=\|x\|+\|y\|$ Ans: False
80. Say True or False $S^{\perp}$ is a subspace of $V$ only when $S$ is a subspace.

Ans: False

## UNIT -V

81. If A is any $3 \times 2$ matrix then $\left(A^{T}\right)^{T}$ is ----- Ans: $3 \times 2$ matrix
82. If $\mathrm{A}=\left(\begin{array}{cc}1+i & 2 \\ 2-i & i\end{array}\right)$ then the conjugate of A is ------- Ans: $\left(\begin{array}{cc}1-i & 2 \\ 2+i & -i\end{array}\right)$
83. Any skew Hermitian matrix with entries from real numbers is always.......

Ans: Skew symmetric matrix
84. A square matrix $A$ is said to be idempotent if $\qquad$ Ans: $A^{2}=\mathbf{A}$
85. A square matrix $A$ is said to be involutory if $\qquad$
86. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & n\end{array}\right)$ and $B=\left(\begin{array}{ll}m & 2 \\ n & 4\end{array}\right)$ are singular matrices then the value of mn is------ Ans: 3
87. If $\mathrm{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & x & 4 \\ 4 & 1 & x\end{array}\right)$ is a singular matrix then the values of x are -----

Ans: 2,-2
88. The characteristic polynomial of $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ is $----A n s: x^{2}-2 x+5$
89. If the Eigen values of $\mathbf{A}$ are $-1,2,5$ the Eigen values of $\left(A^{2}\right)^{-1}$ are----

$$
\text { Ans: } 1, \frac{1}{4}, \frac{1}{25}
$$

90. If the eigen values of $A$ are $-1,2,5$ the eigen values of $(5 A)^{-1}$ are----

$$
\text { Ans: } \frac{-1}{5}, \frac{1}{10}, \frac{1}{25}
$$

91. The product of the eigen value of $\left(\begin{array}{cc}-3 & 3 \\ -2 & 4\end{array}\right)$ is ---Ans: -6
92. The sum of the eigen values of $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right)$ is --- Ans: 0
93.The eigen values of the matrix $I_{2}$ are ---- Ans: 1,1
93. The characteristic polynomial of $I_{2}$ is ----- Ans: $x^{2}-2 \mathrm{x}+1$
95.If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ then adj $A=-\cdots-\operatorname{Ans}\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right)$
94. If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ then $A^{-1}=---$ Ans: $\left(\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right)$
95. The matrix of the quadratic form $2 x^{2}-4 x y+3 y^{2}$ is ---Ans: $\left(\begin{array}{cc}2 & -2 \\ -2 & 3\end{array}\right)$
96. The quadratic form of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is ---- Ans : $x^{2}+y^{2}$
97. The quadratic form of the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is ---- Ans : $2 x_{1} x_{2}$
98. The matrix of the quadratic form $a x_{1}^{2}+a x_{2}^{2}-2 b x_{1} x_{2}$ is ---

$$
\text { Ans: }\left(\begin{array}{cc}
a & -b \\
-b & a
\end{array}\right)
$$

Staff in charge

Gram-Schmidt Orthogonalisation Process.
Every finite dimensional inner product space has an orthonormal basis.
Brook Examples-
Apply Gram schmidt Process to construct an orthonormal basis for $V_{3}(R)$, with the standard inner product with the \& \& their base. a) $(1,-1,0)(2,-1,-2)(1,-1,-2)$.
Let $v_{1}=(1,-1,0) \quad v_{2}=(2,-1,-2) \quad v_{3}=(1,-1,-2)$.
We.knowthat $v_{1}=(a, b, c) \times v_{2}=(a, b, c, c)$

$$
\begin{aligned}
& \quad\left\langle w_{1}, w_{2}\right\rangle=a a_{1}+b_{1}+b b_{1}: \\
& \text { Take } w_{1}=w_{1}=c,-1,0) . \\
& \text { Len }\left\|w_{1}\right\|^{2}=\left\langle w_{1}, w_{2}\right\rangle \\
&=\| x_{1}+(-1)(-1)+0 \times 0 \\
&=1+1=2 \quad \therefore\left\langle w_{1}, w_{2}\right\rangle=2 \\
& \therefore\left\|w_{1}\right\|^{2}=2 \Rightarrow\left\|w_{1}\right\|=+\sqrt{2} .
\end{aligned}
$$

Let $w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}$.

$$
\begin{aligned}
& \left\langle v_{2}, w_{1}\right\rangle=2 \times 1+(-1)(-1)+(-2) \times 0 \quad\left(\because v_{2}=(2,-1,-2)\right. \\
& \left\langle v_{2}, w_{1}\right\rangle=2+1=3 .
\end{aligned}
$$

$$
\therefore w_{2}=(2,-1,-2)-\frac{3}{2}(1,-1,0) .
$$

$$
=(2,-1,-2)-(3 / 2,-3 / 2,0)
$$

$$
=(2-3 / 2,-1+3 / 2,-2,-0)
$$

$$
w_{2}=\left(\frac{1}{2}, \frac{1}{2},-2\right)
$$

$$
\left\|w_{2}\right\|^{2}=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+(-2)^{2}=\frac{1}{6}+\frac{1}{6}+4=\frac{9+1+16}{4}=\frac{18}{1}=9
$$

Let $\omega_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} \omega_{1}-\frac{\left\langle v_{3} \mid \omega_{2}\right\rangle}{\left\|\mid w_{2}\right\|^{2}} \omega_{2}$

$$
\left\|w_{3}\right\|=\frac{b}{q}
$$

The orthogonal basis so $\left\{w_{1}, w_{2}, w_{3}\right\}$.
Hence the orthonormal basis b

$$
\begin{aligned}
& \left\{\frac{w_{1}}{\left\|w_{1}\right\|}, \frac{w_{2}}{\left\|w_{2}\right\|}, \frac{w_{3}}{\left\|w_{3}\right\|}\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right),\left(\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6},-\frac{2 \sqrt{2}}{3}\right),\left(\frac{2}{3}, \frac{-2}{3}-\frac{1}{3}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle v_{3}, w_{\rangle}\right\rangle=\tau \times(+(-1)(-1)+c-2 \times 0 . \\
& x_{3}=(1,-1,-2) \\
& w_{1}=v_{1}=(1,-1,0) \\
& =1+1=2 \text {. } \\
& w_{2}=(1 / 2,1 / 2-2) \text {. } \\
& \left\langle v_{3}, w_{2}\right\rangle=1 \times 1 / 2+(-1)\left(\frac{1}{2}\right)+(-2)(-2) \\
& =\frac{1}{2}-\frac{1}{2}+4=4 \text {. } \\
& \therefore \omega_{3}=(1,-1,-2)-\frac{z}{2}(1,-1,0)-\frac{4}{\left(\frac{9}{2}\right)}(1 / 2,1 / 2-2) \text {. } \\
& =(1,-1,-2)-(1,-1,0)-\frac{8}{9}(1 / 2,1 / 2,-2) \text {. } \\
& =\left(x-x-\frac{8^{4}}{9} \times \frac{1}{x}, 2-x+x-\frac{8^{4}}{9}\left(\frac{1}{x}\right),-2-0+\frac{8}{9}(2)\right) \\
& w_{3}=\left(-\frac{4}{9}, \frac{-4}{9},-\frac{2}{9}\right) \\
& \left\|w_{3}\right\|^{2}=\left(\frac{-4}{9}\right)^{2}+\left(\frac{-4}{9}\right)^{2}+\left(\frac{-2}{9}\right)^{2}=\frac{16+16+4}{9^{2}}=\frac{36}{9^{2}}=\left(\frac{6}{9}\right)^{2}
\end{aligned}
$$

